Are GRB jets magnetically-dominated,
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Spectra are harder at larger fluxes

for P(v) ~ vI™* below spectral peak
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25% of GRBs exhibit this correlation
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(Kaneko, et al. ApJS 2006; PhD thesis)




FORMATION OF A GAMMA-RAY BURST could begin either
with the merger of two neutron stars or with the collapse
of a massive star. Both these events create a black hole

with a disk of material around it. The hole-disk system, in X-RAYS,
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light. Shock waves within this material give off radiation. JET COLLIDES WITH RADIO

AMBIENT MEDIUM WAVES

(external shock wave) ‘

MELTRON STARS turn, pumps out a jet of material at close to the speed of

GAMMA RAYS
BLOBS COLLIDE |

SLOWER (internal shock
FASTER BLOB wave)
BLACK HOLE BLOB—I

\

CENTRAL ¢
ENGINE

PREBURST

-
e
T ——

S

GAMMA-RAY EMISSION

MASSIVE
STAR l AFTERGLOW

I‘\

HYPERNOVA SCENARIO
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Shock PIC simulations -> shocks are the synch-like
‘standard-spectral-shape” sources
(unless IC or optical depth included
talks by Diagne, Pé€’er,...)

Real GRB spectra —> variable & often inconsistent with synchrotron

PIC simulations are not yet adequate:

» too short, too small box (foreshock emission, CR feedback)
» ambient field (whistlers)

GRBs are not due to shocks:
» Collisional dissipation, optical depth effects (e.g., Beloborodov talk)
» Poynting-flux-driven (magnetically-dominated) outflow
= Reconnection




* Dissipates energy and radiates via shocks
» Shocks are steady-state structures:
little or no emission variability

little or no radiation anisotropy

« Emit synch-like (and possibly flat) spectra:

no “synch-violating” spectra

need additional physics (self-absorption,???)

-- alternatives needed --
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/ Weibel fields

Relativistic & non-relativistic
reconnection in e*e” pair plasma
(Swisdak, Liu, J. Drake, ApJ, 2008, 2009;
Zenitani & Hesse, PoP, 2008)
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PIC 3D e*e- simulations (Frederiksen, Haugboelle, Nordlund, Medvedev, ApJL, 2010)
Radiation is obtained self-consistently in situ, “on the flight” from the same particles
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R Adiation duurina Weilbel instab

PIC 3D e*e simulations (by Frederiksen, Haugboelle, Nordlund)
Radiation is obtained self-consistently in situ, “on the flight” from the same particles

before saturation

magnetic field energy density

dW/dndw [arb. unit]

after saturation

jitter parameter
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Intrinsic anisotropy of co-moving spectra
Normalized jitter emissivity, P(v',0') Relativistic kin em atics:
time-dependent aberration
& Doppler boost

annuli of ¢ = const.

center of explosion
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Resulting light-curves:

bolometric flux
& hardness evolution




Assume magnetic field dominated jet; radiation is produced in reconnection.
Consider radial field (due to Contact Discont. instability) and
poloidal field (large-scale jet field)
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tangential field configuration model is at
odds with most observations
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paradigm shift: « Emissivity is intrinsically anisotropic (angle-dependent)

« Emissivity can also be time-dependent

» Geometry is a major factor:
global jet geometry = spectral variability
jet-in-a-jet orientation - diversity of GRBs

Spectrally variable GRBs
—> not consistent with optically thin shock model (baryonic and/or leptonic)
—> indicative of magnetic reconnection (Poynting flux dominated jets)
o >-2/3 non-synchrotron spectra are jitter and/or small-pitch-angle.

—> models with variable optical thickness (& thermal+PL) need more studies

Low or no spectral evolution GRBs
—> can be from shocks
- flat, a ~ -1, jitter spectra — leptonic jets preferred

—> synchrotron-like — baryonic ejecta preferred




